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LETTER TO THE EDITOR 
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David A Noevert, Raymond J Croniset, Helen C Matsost and 
Vladimir I Nikora$ 
t Biophysics Branch, NASA Marshall Space Flight Center, ES-16, Huntsville, AL 35812, 
USA 
t Moldova Institute for Geophysics. Moldova, CIS 
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Abstracr Bioconvection is a fluid instability common to many biological organisms including 
swimming bacteria, alga and protozoa The statistics of bioconvective p a "  formation is 
tested against percolation models for spacz-filling. A percolation threshold is found (p  = 0.63) 
and compared ru theoztical point distributions for random tesselations. Simulations reveal that 
a percolation backbone defines a complete path moss  the observation window but remains 
incomplete as an equal paflitinning grid (Voronoi diagram). The generic development of 
incomplete Voronoi grids and lheir yet unknown statistical propenies captures 5ome interest 
as M alternative to traditional point-based laKim. 

Bioconvection is a biological example of complex pattem formation [l-71. As shown 
in figure 1, the pattern can correspond to an array of dots, stripes or polygons. The 
fluid instability called bioconvection has been studied for at least 100 years [l] and has 
attracted more recent interest [2-71 as a fascinating and rich field for considering the 
mechanisms of how order can appear from seemingly disordered driving forces. In particular 
for some species of swimming bacteria, alga and protozoa, the onset of a bioconvective 
fluid instability can be summarized schematically as (i) the mobile cell orients itself in a 
preferred swimming direction; (ii) at high concentrations, the cells accumulate as a heavy 
surface layer of suspended organisms; and (iii) when surface crowding reaches a maximum, 
downstreaming or fingering of dense pockets of cells and fluid begins to settle. As a result, 
a disordered medium produces the lines of concentration which characterize bioconvection. 
Many interesting phenomena 12-71 have recently been added to this simplified picture, 
but the importance of active cells swimming in a slightly less dense medium remains the 
instability's hallmark. 

To analyse pattern formation, Zaninetti [8] has recently proposed an incomplete Voronoi 
diagram. The Voronoi method 191 generically chooses the most democratic partitioning of 
space based on centroids or seed nuclei. In the case of bioconvection, the seed points 
can be equated to randomly placed fluid packets containing slightly more organisms than 
their sumunding areas. These dense neighbourhoods nucleate the pattern. A characteristic 
of Zaninetti's algorithm is that, in contrast to traditional polygons produced by Voronoi 
diagrams, his method selectively removes some edges and thus forms a grid pattern much 
akin to a percolation lattice. Observations of bioconvection, likewise, have revealed this 
morphology [IO] and the present work considers whether the bioconvective fluid instability 
can be compared to percolation and incomplete Voronoi lattices. 

To produce bioconvection, Polytomella parva (swimming speed, 100 pm s-I; diameter 
10 fim; density, 1.05 g were examined in shallow dishes [ l  11. The algal suspensions 
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Figure I .  Typical bioconvective lanice with incomplete polygons or Voronoi filling. Light 
regions correspond to 'down' flow; dark regions correspond to 'up' flow. Differences in organism 
count between up and down regions can reach between 2 lo 100 fold. Digilized photograph 
of the incomplete Voronoi diagram of bioconvection panerns in sMlow, dense suspensions of 
&he mobile biological cell, Polyfomella porvn. organism count I million cellslml in suspension 
of 4 mm uniform depth. The while areas correspond to regions of lower cell count. Average 
distance between sbipe patterns is 0.2 mm. 

were grown to a final concentration of IO6 ml-' in an aqueous yeast medium. Substantial 
work has appeared characterizing these bioconvection patterns [12,13]. Lighting was 
provided uniformly from the top using collimated, cool incandescent lamps (intensity 
I = I2 lux, constant temperature T = 25 "C, suspension depth d = 4 mm and dish diameter 
D = 50 mm). 

The bioconvection paitern of incomplete Voronoi diagams is shown in figure 2. The 
lattice is polygonal in character, but with some edges removed. The parameter of interest 
is the percolation threshold [8]. This value ranges between 0 and I and corresponds to 
the probability of a connected skeleton reaching from one side to the opposite side of the 
working box. In. physical terms, this threshold can be calculated as the fractional number 
of sides selected. For two-dimensional simulations [SI (figure 2). this fraction turns out 
to be approximately 0.6. This critical value of percolation separates the finite clusters of 
sites from an infinite cluster. In othertypical systems, phase behaviour can be defined for 
transitions between conductor-superconductors or magnet-paramagnets. 

To compare these experimental lattices to incomplete Voronoi diagrams. we conducted 
a number of simulations. The simulation began with an initial distribution of points 
taken as ( x ,  y )  coordinates. Theoretical distributions of centroids were tested for random, 
exponential, normal and uniform distributions. The centroid of each experimental pattern 
was also found and the ( x ,  y )  coordinates were used to generate a comparable Voronoi 
diagram. When overlayed with the experimental lattice, a measure of the lattice 
incompleteness is found as the missing number of sides or percolation threshold. The 
bioconvective lattice (figure 1) meets the definition of a percolation threshold: the connected 
backbone reaches from top to bottom within the observation window. The experimental 
value equals p = 0.63. For comparison, a complete Voronoi diagram is derived in figure 2 
assuming centroids from an unconnected bioconvective lattice. 

In conclusion, we have shown that bioconvection is an experimental manifestation of 
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Complete Voronoi Lattices 

Random Exponential [I1 Normal [ll Uniform [11 

Numerical Simulation of Incomplete Voronoi Lattices 

p 4 . l  p=0.3 p=0.6 p=0.7 

Emerimental and Numerical Bioconvective Lattices 

Figure 2. Numerid simulations of incomplete Vomnoi diagrams for bioconvection. Theoretid 
distributions of centroids for random, expanential, normal and uniform distributions. The 
centroid of each expeiimental pattern (gravity centre for backbone or connected percolation 
lattice) is found and the x ,  y coordinates are used to generate a perfect Vomnoi dia-. When 
overlayed with the experimental lattice. a measure of the lanice incompleteness is found as the 
missing number of sides. Comparison is made with a random distribution of centroid points 
(95% confidence level). The well known Gaussian model suggests that spatial fluctuations are 
random with a bell-shaped sipature distributed around the mean. An exponential distribution, 
an the other hand, is equivalent to Brownian noise. with a kind of thermal randomness which 
distinguishes (flattens) its spatial fluctuations particularly al the small scale end (large ( x ,  y ) )  of 
the spectrum. The difference between uniform and normal distributions is that normal ( x ,  y )  
values are selected randomly from n normal distribution with standard deviation of [ I ]  and mean 
(01; alternatively. the uniform distribution include values selected randomly between 0 and I 
with mean [OS]. It is notewonhy to consider the failure of an exponential distribution, since 
this effectively excludes a thermal (Brownian) cause for spatial fluctuations. The bins of high 
(y) values is seen in the uniform distribution; low 6) values in the normal distribution. 

incomplete Voronoi lattices. Experimental nuclei are found for polygonal patterns and 
compared to theoretical distributions. The percolation threshold is calculated over 20 
representative windows as 0.63. Numerical simulations of incomplete Voronoi diagrams 
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offer a quantitative realization of these biological lattices for random, exponential, normal 
and uniform seed distributions. The completeness of the various random Voronoi simulations 
is shown for four different percolation thresholds between 0.1 and 0.7. In addition to 
extending the range of traditional Voronoi lattices to include incomplete or percolation 
results, this representation differs from usual statistical lattices. Most notably rather than 
specifying the backbone as connected points, the points themselves serve as centroids to 
define the surrounding neighbourhood. Thus, percolation threshold can be understood as 
removal of polygonal sides rather than connection of random points on a backbone. The 
unique quality of Voronoi tesselations [9] (e.g. as the most democratic partitioning of space) 
can thus translate into the powerful methods developed for statistically treating percolation 
problems (such as renormalization, scaling and universality). Although applied to biological 
lattices here, the Voronoi technique is general and can characterize a number of related 
problems in statistical physics. Recent work [ 141 has developed Voronoi tesselations for 
galactic modelling and stellar distributions. 
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